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Synopsjs 
Two possible drag reduction mechanisms were examined by studying the viscoelastic 

effects of polymer solutions for the separate cases of oscillatory shear flow and elonga- 
tional flow. The constitutive equation used was based on a modified dumbbell molecu- 
lar model which predicts non-Newtonian viscosity and both the primary and the secon- 
dary normal stress daerences. It can be shown that when this constitutive equation is 
arranged in the form of the Oldroyd model, the latter becomes a special case of this 
more general equation. The present results show that viscoelastic effects on the mean 
local rate of energy dissipation of a fluid element in an oscillatory motion are negligibly 
small. However, such effects introduce very large increases in the elongations1 vis- 
cosity as the stretching rate exceeds a certain limiting value and the flow time exceeds 
the terminal relaxation time of the fluid. The relative merits of these findings m possible 
explanations of turbulent drag reduction are briefly discussed. 

INTRODUCTION 
It is well known that the addition of very small amounts of high molecular 

weight linear polymers to solvents in turbulent pipe flow can substantially 
reduce the pressure drop at a given flow rate. Toms' first observed this 
phenomenon in turbulently flowing solutions of poly (methyl methacrylate) 
in monochlorobenzene, and since that time many investigators have con- 
firmed his findings. It can readily be demonstrated that a few parts per 
million of polyethylene oxide in water will lead to a reduction of the pure 
water friction in turbulent pipe flow by nearly 70% depending on the 
Reynolds number. However, in spite of the considerable interest and 
accomplishments in recent years, the basic mechanisms responsible for drag 
reduction are still unresolved. 

The early work of Metzner and Park2 suggested that viscoelastic effects 
might possibly be involved in the drag reduction phenomenon. These in- 
vestigators carried out viscometric and drag reduction measurements in 
concentrated solutions and were able to correlate the reduction in wall 
shear stress with the first normal stress difference. In general, all polymers 
which exhibit drag reduction effects in dilute solution also show various 
viscoelastic effects at  higher concentrations. Currently, two viscoelastic 
mechanisms have been proposed in the literature to account for the drag 
reduction effect, and these will now be briefly developed. 
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Some investigators have asserted that drag reduction results from the 
viscoelastic effect of polymer solutions on transient shear flows. Ultman 
and Denn13 by using a simple 14axwell model, have shown that flow struc- 
tures may be changed if the flow velocity exceeds the finite propagation 
speed of shear waves in a viscoelastic medium. Ru~kenstein~.~ extended 
this concept to show that the shear stress in an element of liquid in contact 
with the wall for a given period of time is smaller in the viscoelastic case 
than in the Newtonian one. His analysis was based on an Einstein and 
Li renewal model for the wall turbulence6 and a simplified Oldroyd-Maxwell 
constitutive equation. Similar results were also obtained independently 
by Hansen.? 

The second proposed mechanism for drag reduction emphasizes the high 
viscosity exhibited by polymer solutions in an elongational flow field. 
Peterlin8 indicated that the interaction of each individual polymer molecule 
with turbulent eddies is important in the sense that polymer molecules 
locally store energy as a function of the local strain rate of the flow. This 
change in energy balance produces a significant viscosity contribution as 
the polymer molecule is exposed to a dilatational flow, the turbulent eddies 
being effectively damped out. PatersonQ reasoned that the high solution 
viscosity in this case is related to the dissipation within polymer coils during 
deformation in addition to the work required for elastic deformation. 
Lumley’O estimated that the elongational viscosity may be as much as four 
orders of magnitude greater than the shear viscosity. The tendency of 
such polymer solutions to form filaments under stretching motions is a 
qualitative example of the effect. Since turbulent drag reduction and high 
elongational viscosity appear to be the only two large macroscopic effects 
observed in very dilute polymer solutions, it is possible that the two phe- 
nomena are related. Specifically, Kline et al.” and Corino and Brodkey12 
reported that the “bursting” process of turbulence near the wall in a turbu- 
lent boundary layer is of a stretching nature. Under such circumstances, a 
high elongational viscosity may be expected to suppress the growth of 
vortices, thus decreasing the turbulent dissipation and subsequently the 
wall shear stress. 

In  this report, these two proposed mechanisms for drag reduction are 
examined by employing a more complete constitutive equation for poly- 
mer solutions. This equation not only enables one to better predict the 
basic viscoelastic phenomena of polymer solutions from the continuum 
point of view but also provides a needed correspondence to a popular mo- 
lecular model. It is hoped that such a continuum approach may shed more 
light on the merits of each proposed mechanism of drag reduction without 
losing insight from the molecular level. 

CONSTITUTIVE RELATION 

Since the basic mechanisms involved in the drag reduction phenomenon 
seem to be related to the visoelaaticity of polymer solutions, it was decided 
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to approach the problem from the continuum point of view by choosing an 
appropriate constitutive equation relating the stress response of polymer 
solution to the deformation of the flow. Such a constitutive relation, even 
if not an ideal one, should at least enable one to predict the three basic 
rheological functions of a viscoelastic fluid, namely, the shear-dependent 
viscosity and both the primary and secondary normal stress differences. 
The importance of the second normal stress difference has been recently 
pointed out in studies of hydrodynamic stability problems. l3 Furthermore, 
it is also desirable that the given constitutive equation should ideally 
correspond to molecular behavioral models if possible. With this goal in 
mind, it may be useful to briefly discuss the available molecular models as a 
background for the choice of any constitutive equation. 

For the study of nonlinear effects, two molecular models-the simple 
dumbbell and the more realistic necklace model-are more appropriate 
than the hydrodynamically equivalent semipermeable sphere. l4 In apply- 
ing these models, the motion of the free ends held together with elastic 
forces is considered under hydrodynamic resistance. The necklace model 
considers the motion of N + 1 beads connected by N elastic springs. The 
motion of a molecule can be described by a translation equation and N 
total differential equations containing N eigenvalues A, (m = 1,2,3 
. . . . . N ) .  These equations have exactly the same character as the 
corresponding equation of the dumbbell model, which yields results cor- 
responding to the first eigenvalue XI. Therefore, in those cases where 
effects mainly depend on the fundamental mode of molecular motion, the 
difference predicted by the dumbbell model and the necklace model re- 
sides primarily -in the numerical values of coefficients rather than in any 
functional dependence. This has been shown in studies applied to in- 
trinsic viscosity and flow birefringence. The dumbbell model, however, is 
more widely used because of its lesser mathematical complexity. If the 
motion of the entire polymer molecule is of primary interest very little is 
lost by this choice of models. 

From the continuum point of view, it is now generally accepted that so- 
called “substructures” exist in systems such as polymer solution. In  one 
specific case,15 it has been shown that the theoretical results derived from 
an anisotropic fluid theory of the “structured continuum” typels closely 
describe the experimental behavior of dilute polymer solutions compared 
with experiments. Recently, Gordon and Schowalter17 modified Erickson’s 
anisotropic fluid theory and identified it with the result of the molecular 
dumbbell theory. They formulated an expression for the time derivative 
of the end-to-end position vector of a linear macromolecule and combined 
it with the distribution function for a dilute solution of dumbbell element 
to obtain an explicit constitutive equation. This equation, based on the 
combination of continuum and molecular approaches, leads to predictions 
of both non-Newtonian viscosity and nonzero first and second normal 
stress differences in simple shearing flow. The second normal stress 
difference, having the opposite sign of the first one, is negative. 
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If the stress tensor is defined as 

T =  - P I + %  

i.e., sum of the hydrostatic pressure p and the stress deviator '5, then the 
Gordon-Schowalter model (referred to as G-S model afterward) takes the 
form 

.z = 2q,d + d (2) 

where q. is the solvent viscosity, d is the strain rate tensor, and d obeys a 
convected Maxwell model, 

D d  2Nc 
Dt M d + X i  - = - kTXi(1 - c)d (3) 

where XI is a characteristic stress relaxation time, N is Avogadro's number, 
M is the average molecular weight, c is the concentration, k is Boltemann's 
constant, T is the absolute temperature, and E is a phenomenological con- 
stant subject only to the condition 

O < a < l  (4) 

and the time derivative is defined as 

Everage and Gordon18 obtained an expression for the intrinsic viscosity at 
zero-shear rate 

NkT 
[vlo = - (1 - e)X1. 

MV.4 

Hence, eq. (3) can be rewritten as 

which, together with eqs. (l), ( 2 ) )  (4), and (5)  form the complete G-S model. 
Since this model is based on a modified molecular theory of dumbbell 

elements, it is intereating to compare it with another constitutive equation 
which also has its origin in the dumbbell model. L u m l e ~ ' ~  has recently 
succeeded in placing the equation relating stress and deformation in a dilute 
polymer solution through use of the dumbbell model in the form of the 
Oldroyd constitutive eq. (20), 
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where the time derivative is taken aa 

and the constants were interpreted as 

A1 = terminal relaxation time 

A2 = W ( 1  + c[tlo) 

to = t .( l  + C[tlo). 

(10) 

(11) 

(12) 

and 

The correspondence between the Oldroyd model and the dumbbell model, 
as pointed out by Lumley, is essentially independent of flow field. The 
only assumption is that the molecules are small relative to the smallest 
scale of the flow. Since under ordinary circumstances the smallest scales 
of the flow are several orders of magnitude greater than molcular dimen- 
sions,l0 this condition is readily met. In Oldroyd's original derivation,2l 
the restrictions placed on the material constants assured a positive Weissen- 
berg effect and tension along the streamlines in a cone-and-plate viscom- 
eter. These restrictions, in terms of the present notations, are 

t o  > 0 
A 1  > A2 2 '/ox1 > 0 

or 

chol I 8. (13) 
For most drag-reducing dilute polymer solutions, L u m l e ~ ' ~  has estimated 
c[to] to be approximately 

It is not surprising that the Oldroyd model has an apparent correspon- 
dence to the molecular dumbbell model, since it was originally derived from a 
structural model for a colloidal suspension in which Hookean elastic spheri- 
cal particles were supposedly distributed in a Newtonian viscous liquid. 
Although such a model clearly establishes the applicability of the Oldroyd 
constitutive equation to the flow of dilute polymer solutions, the con- 
stitutive equation fails to predict either a non-Newtonian viscosity or 
nonvanishing second normal stress difference. It can be shown that the 
G-S model can be placed in the form of the Oldroyd model with some minor 
modifications. Substituting eq. (2) into eq. (7), one obtains 

which adequately satisfies eq. (13). 

Equation (14) may be rewritten by applying eqs. (11) and (12), that is, 
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or 

TING 

D'5 
'5 + A1 - = 270 Dt 

This equation is in the same form as eq. (8), except that D/Dt is now de- 
fined as in eq. (5). It is clear that the Oldroyd model is a special case of 
the G-S model when E = 0. It is believed that this modified form of the 
G-S model can be better applied to the various kinds of dilute polymer 
solution flows without losing the capability of including all the important 
basic rheological properties of a viscoelastic liquid. In the following 
sections, the two mechanisms proposed for explaining drag reduction by 
dilute polymer solutions will be analyzed with this constitutive equation. 

ANALYSIS 

Case 1 : Oscillatory Shearing 

Under flow conditions, energy is continuously dissipated as a result of the 
irreversible work required to deform the fluid against the fmces which tend 
to maintain equilibrium. Consequently, the rate of energy dissipation 
may be equated to the net power required to sustain the flow and is thus 
proportional to the viscous shear forces. While the frictional drag is 
reduced by polymeric additives, the decrease in wall shear stress will re- 
flect a decrease in the rate of energy dissipation. Since the details of 
turbulent motion are not yet completely well established, it is very difficult 
to analyze the overall character of steady turbulent flow. However, 
chaotic turbulent flow can always be Fourier-analyzed as an ensemble of 
sinusoidal oscillatory motions at discrete frequencies spanning a wide 
range. Energy spectrum based on frequency can ordinarily be considered 
as consisting of two parts: (a) an energy-containing range which covers the 
lower-frequency end representing the motions of large-scale turbulent 
eddies, and (b) the energy dissipation range which covers the high fre- 
quencies corresponding to the motions of small-scale fluctuations. It may 
therefore be argued that the local energy dissipation properties of a fluid 
element in a constant frequency sinusoidal oscillatory field may well 
represent that in a turbulent flow, with respect to a specific frequency 
component of the fluctuations. Evaluation of the total rate of energy 
dissipation will involve integrating over the whole frequency spectrum and 
over the whole domain of the flow region. This last step certainly will 
depend heavily on the experimental information in the detailed spectrum 
and turbulence intensity distribution. In this section, the sinusoidal 
oscillatory motion of a viscoelastic fluid obeying the constitutive eq. (15) 
will be considered and compared with that in a Newtonian fluid. 

The shear behavior of a viscoelastic fluid in an oscillatory motion has 
been recently analyzed by Darby22 using a complex viscosity defined as a 
ratio of oscillatory shear stress T* and strain rate I*, i.e., 
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where e is the phase angle between oscillatory stress and strain, q' and q" 
are the in-phase and out-phase components of the complex viscosity, 
respectively, and 

(17) 

(+' + i+") e". (18) +* = +oei"t = byoe"o' = 

r* = roe"("+@) = (.' + irn)eiot  

The local rate of energy dissipation is simply the product of the in-phase 
stress and strain-rate, 

P = Re(r*).Re(+*) = -wroyo sin wtecos (wt + e). (19) 

This is averaged over the period of one cycle to give the mean local rate of 
energy dissipation, 

Pdt = l/z oroyo sin 6 

or 
ii = '/z +"r". 

The motion of a fluid element under oscillation can be represented by 

u1 = U I  eiut (21) 

where the subscript 1 denotes quantities evaluated at the fluid element. 
This motion will introduce a shear wave propagating in the transverse 
direction of the oscillation. The fluid in the region of the oscillating 
element will respond with a velocity u*, obeying the equation of motion, 

au* ar* 
Pbt = by' 

Substituting eq. (16) and the relations u* = U(y)ei(" and + = &*/by 
into eq. (22), U(y) can be solved as follows: 

~ ( y )  = ulexp [ - e - y ] .  

+1 = +*Iu4 = - l / i w p / q *  ule;ut 

Hence, the local shear rate on the oscillating element is 

(23) 

and the local shear stress is 

= r*lu4 = q*+ = -dLpll* Uleiot. (24) 

When these results are combined with definitions (17) and (18), the mean 
local rate of energy dissipation, eq. (20), becomes 
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For a viscoelastic fluid obeying the constitutive eq. (15), undergoing an 
oscillatory motion, the complex viscosity may be calculated in the following 
mannerz3 : 

where 

X = (1 + ~ ~ 2 0 2 ) [ 1  + ~ x ~ ~ w ~  + 4 2  - e)X12jo2I + a / ~ s X ~ ” 3 ; ~ 4 e 2 ( 2  - t)2, 

Y = c[q]o[l + 4 X l 2 d  + ‘/4 4 2  - e)X1z3;02], and 

z = c[v]o X’O[1 + 4 X’ZW2 - ‘/z 4 2  - t)X123;02]. 

This result leads to an expression for the mean rate of energy dissipation 
for the G S  fluid: 

OPU12 x +  Y p = -  
4 [XZ + 2XY + Y2 + 221 ’”  

This rate depends on the local shear rate as well aa the concentration of 
polymer solution. 

For the special case of t = 0, which corresponds to the Oldroyd eq. (8)) 
the complex viscosity becomes 

and is identical to that obtained by Williams and Bird.Z4 From equations 
(29) and (30)) p thus reduced to 

Since XZ < XI, see eq. (13)) it is apparent that viscoelasticity will cause less 
local power dissipation than would be observed in viscous Newtonian 
fluids, where the power dissipation is expressed by 

- o p U 1 2  p = -. 

Since P relates to the power required to sustain flow, this result, aa pointed 
out by Darby,zz further indicates that less energy is needed to sustain 8 
given fluctuation in a viscoelaatic fluid than in a purely viscous fluid of the 
same viscosity. This leads to the expectation that the viscoelastic effect 

(32) 4 



DRAG REDUCTION MECHANISMS 3177 

would tend to destabilize a flow, i.e., promote transition from a laminar to 
a turbulent flow. Theoretical a n a l y s e ~ ~ ~ . ~  seem to support this conclusion. 

If Xz is set to be zero in eq. (31), then 

(33) 
0PUl2 1 p = -  

which is the previous result obtained by DarbyZ2 and Hansen? For Xz = 
0, the model reduces to the simple convected Maxwell model, which has 
been widely applied by many  investigator^^^'*^ without any consideration 
of molecular details or characteristics. However, eq. (11) clearly shows 
that X2 can never vanish. Furthermore, if the total stress obeys the Max- 
well model, eq. (3), it is equivalent to assume that in eq. (2) the solvent 
has a zero viscosity, which is certainly unreasonable. These results will be 
further discussed in later sections. 

4 

Case 2 : One-Dimensional Stretching 

Now consider the case of a column of viscoelastic liquid stretched with 
its axis oriented in the direction of x-axis. The velocity field is represented 
bY 

v = [r(t)z, - l i z r ( t )y ,  - l izr( t )z i  (34) 
which is irrotational in character. The strain rate tensor is considered 
to be 

r(t) 0 
d = [ 0 -+r(t) 

0 0 

and the condition of incompressibility is satisfied. 
components exist, and these can be derived from eq. (15) : 

Only the normal stress 

and 

Since these equations are uncoupled in the present situation, they can be 
readily integrated to give 
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The limiting case of constant stretching is most frequently used to inter- 
pret physical phenomenon. For r(t) = I‘ = constant, 

1 -2(1 --r)hlr 
1 - e- x1 

1 - 2(1 - E)xlr 

An elongational viscosity can be defined as 

(424 

Three remarks concerning this result are in order. First, for the case of a 
Newtonian fluid, X2/X1 = 1, the elongational viscosity reduces to the 
classical results of Tr~uton ,~’  I j N  = 3. Second, the effect of c = 0 reduces 
the stretching rate by a factor (1 - E) and does not introduce a nonvanish- 
ing second normal stress difference in this special case. Third, as time 
approaches infinity, the elongational viscosity, starting from f R  = 3X2/X1 
a t  t = 0, reaches the limiting value 

For e = 0 and I’ > 0 in the stretching case the well-known singularity 
predicted by the molecular dumbbell theory,1°,14 2 X1 r = 1, is exhibited. 
Based on the present modified dumb-bell model this limiting condition 
reduces to 

2(1 - E)xlr = 1. (43) 

At this stretching rate, eq. (42a) can be expressed as 
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It can be shown that the result of eq. (42) is equivalent to that of Ever- 
This further 

Equation (15) and 
age and Gordon’* through the use of eqs. (11) and (12). 
establishes the validity of the present modification. 
the significance of these results will now be developed. 

RESULTS AND DISCUSSION 

The local power dissipation of a fluid element in an oscillatory field may 
be calculated by using eq. (28). Figure 1 shows the result for the simple 
case e = 0, corresponding to that of the Oldroyd fluid. If the dimension- 
less quantity Q = 4 p / w p U 1 ~  is plotted against hlw, it can be seen that the 
effect of increasing retardation reduces the viscoelastic effect on P at  
higher frequencies and a minimum is located at  values of Xlw of O(1). This 
result immediately points out the shortcoming of the simple convected 
Maxwell model, where it is assumed Xz = 0, in analyzing the transient shear 
flows. For the case of poly(ethy1ene oxide), a well-known drag-reducing 
polymer, a t  the concentration of 250 ppmw, the ratio of X2/X1 is shown in 
Figure 2 as a function of the average molecular weight. The curve is 
calculated through use of eq. (11) and the well-known Mark-Houwink- 
Sakurada relationB 

[v]o = 1.25 X lo-’ MW0*’* cc/g. 

It should be noted that when the Polyox molecular weight is 4 X lo6, 
X2/X1 assumes a value of about 0.7 as shown in Figure 2. There is essen- 
tially no change in P as compared with the Newtonian case where Q = 
4P/wpU12 = 1.0. Clearly, as the concentration decreases further to the 
usual drag reduction range, say, 25 ppmw, h / X 1  will be even closer to 1.0, 
and the effect on P is further diminished. The effect of e = 0, which 
relates to the non-Newtonian viscosity and nonzero second normal stress in 

0.8 - 
N- 

0.6 - 

0.5 - 
E =O 

0.4 5 
0. I 1.0 10.0 100.0 

A l W  

Fig. 1. Effect of retardation on fi. 
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Polyethylene -oxide 
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Fig. 2. Retardation time vs. molecular weight for poly(ethy1ene oxide). 

shear flows, is shown in Figure 3 to indicate a negligible effect, since all 
values of Q are again very close to 1.0. It is therefore concluded that 
viscoelasticity, based on the present model, has virtually no effect on the 
mean local rate of energy dissipation in an oscillatory motion. Con- 
sequently, it is felt that the viscoelastic effect on the transient shear flow, 
as opposed to those conclusions drawn from analyses based on the simple 
Maxwell model14g7 fails to adequately explain the drag reduction effect. 

For the case of one-dimensional stretching, results are also presented in 
Figures 4, 5,  and 6. Figure 4 shows that the elongational viscosity ap- 
proaches a finite asymptote if 2(1 - c)XJ < 1, as predicted by Denn and 
M a r r u c ~ i , ~ ~  who used the simple Maxwell model to obtain slightly different 
results but failed to predict the correct behavior of fjg at t = 0. At the 
limiting condition of eq. (43), the elongational viscosity increaaes linearly 
as time t becomes large. The limiting slope is proportional to 1 - (X2/X,) 
and decreases as X2/XI increases (see Fig. 5) .  However, it is interesting to 
note in Figure 6 that a tremendous increase in f j 8  takes place as soon as 
2(1 - €)All? exceeds 1. For (1 - e)Xlr = 2.0, f j R  increases three orders of 

0.98 - 
N- 
3 
a 

* 

0°.961 0.95 

Polyethylene-oxide 
M w . 6 ~  10' 
c-250 PPMw 
Xp/Al= 0.62 

n 94 4 . 
0. I 1.0 10.0 100. 

XPJ 

Fig. 3. Effect of e and +O on P .  
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I ’  
I I I I I I I I I I I I 

0 I 2  3 4 5 6 7 8 9 10 II  12 
t /X (  

Fig. 4. Elongational viscosity vs. time for 2(1 - e)h,r < 1. 

magnitude after a time t = 2x1. This phenomenon is better represented 
in Figure 7 where ijR is plotted against (1 - e)X$. As time increases, a 
lower stretching rate is required to reach a very high elongational viscosity. 
The recent work of Hansenl indicated that the onset of turbulent drag 
reduction is associated with a time scale t /X1 = 6.6. In that case, it is 
seen from Figure 7 that large values of I j R  are easily reached when (1 - c) * 

Xlr slightly exceeds 0.5. 

16 

14 

12 

10 

‘k8 

6 

4 

2 

0 
I 2  3 4 5 6 7 8 9 10 

t/X, 

Fig. 5. Elongational viscosity vs. time for 2(1 - e)Ad? = 1. 
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Fig. 6. Elongational viscosity vs. time for 2(1 - t)Xlr > 1. 

Denn and M a r r u ~ c i ~ ~  also carried out a simple experiment by stretching 
a column of a viscoelastic liquid, 1500 ppmw Separan AP-30 in a 15% 
mixture of glycerin in water. (Separan AP-30 is a partially hydrolyzed 
polyacrylamide polymer commercially available from the Dow Chemical 
Company.) By taking high-speed motion pictures, they studied the 
kinematics during the stretching motion and failed to observe any difference 
between the Newtonian and the viscoelastic case. This negative experi- 
mental finding may be easily explained by noting that the range of t / h  in 
the experiment was only 0.25. Figure 6 indicates that is less than ?N in 
Newtonian fluids until t = X1. The apparent importance of the relative 
time scale suggests its relevance to the drag reduction effect, a factor also 
noted by Lumley'O and others. 

In  view of the above analysis of the viscoelastic effects on transient 
shearing and elongational flows, it seems that the latter effect could better 
explain turbulent drag reduction because of the singular behavior exhibited 
by eq. (42). As mentioned earlier, extensive studies of the turbulent 
bursting process near the wall in a turbulent boundary 1ayer11~12 indicate 
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0 

I I I I I I 

(I+) r 
Fig. 7. Elongationel viscosity vs. (1 - r )Xlr  for &/XI = */s. 

the existence of motions of a stretching nature. When undergoing such 
elongational deformations, polymer molecules produce extensive viscous 
dissipation as reflected by the large increase in elongational viscosity. 
Data reported by Kline et al.11 show that essentially all turbulence pro- 
duction occurs during the bursting period. The growth of small scale 
eddies may be suppressed because of elongational viscosity effects on the 
turbulent bursting process. This reduces the turbulent dissipation in the 
wall region and therefore causes turbulent drag reduction. 

CONCLUSIONS 

By applying a constitutive equation based on a modified molecular dumb- 
bell model, two proposed mechanisms responsible for drag reduction of 
dilute polymer solutions in turbulent flow are examined. The viscoelastic 
effects of polymer solutions on the oscillatory shear flow and the elonga- 
tional flow are considered separately. Analysis for the case of oscillatory 
shearing shows that the effect of viscoelasticity on the mean local rate of 
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energy dissipation of a fluid element oscillating sinusoidally is negligibly 
small, and indicates the shortcoming of using the simple Maxwell model in 
predicting the behavior of transient shear flows, especially when the results 
are applied to explain turbulent drag reduction. On the other hand, the 
results of analyzing an elongational flow indicate that the elongational 
viscosity in a viscoelastic fluid may increase to very large values as the 
stretching rate and the time exceed certain limiting values. It is therefore 
concluded that turbulent drag reduction may result from the suppression of 
turbulent vortices during the bursting period because of high elongational 
viscosity effects involved in the bursting processes in the wall region of the 
turbulent boundary layer. These results also support the concept that the 
time scale ratio is the important and relevant factor in the drag reduction 
effect. More experimental data, however, are needed to estimate the 
magnitudes of the stretching rates and time scales involved in the turbulent 
bursting process. With these data, it is hoped that the detailed interaction 
of polymer molecules with small scale turbulent eddies together with the 
effect of elongational viscosity on this process may be successfully analyzed. 
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